CONSTRAINT PROGRAMMING

Introduction

- Disadvantages of SAT solvers:
- The range of problems that can be solved is limited
- integer variables can not be represented easily and efficiently
- not every constraint can easily and efficiently be rewritten in CNF:
- numerical constraints $x_{1}+x_{2}+\cdots+x_{n} \geq 4$
- graph constraints
("from node x node y can be reached", "the shortest path from node x to node y may not be longer than a ")
- dealing with optimization problems is hard
- The specification language is not very simple to use

Constraint Programming

- Constraint programming: a programming paradigm in which a problem is specified declaratively in terms of high-level constraints, and solvers find solutions
"Constraint programming =

$$
\begin{array}{ll}
\text { Model } & \text { (by user) } \\
+ & \\
\text { Search } & \text { (by solver)" }
\end{array}
$$

Non-boolean Variables \&

High-level Constraints

- variables

$$
\mathrm{E}_{11} \ldots \mathrm{E}_{99}
$$

${ }^{\bullet}$ variables have domains

$$
E_{x y}=\{1 \ldots 9\}
$$

- Constraints all_different $\left(\left[\mathrm{E}_{\mathrm{Lx}}\right]\right), \ldots$ all_different $\left(\left[E_{x_{1}}\right]\right)$, all_different $\left(\left[\mathrm{E}_{\mathrm{n}} \ldots \mathrm{E}_{33}\right]\right), \ldots$

High-level all difference constraint

Solving

- Two approaches:
- automatically translate high-level constraints into a low-level representation (like a CNF formula)
- MiniZinc (specialized language) + G12 (solvers)
- NumberJack (Python library)

Domains

- run a solver which directly supports high-level constraints must be finite
Common in constraint programming are finite domain solvers based on exhaustive search \& propagation

Propagation

- Each (high-level) constraint is implemented in a propagator, which only operates on the variables listed in the constraint
- For each variable we store the domain of values the variable can still take, which may be
- the complete domain (i.e., all values - clearly only works for problems with finite domains)

$$
D(x)=\{2\}, D(y)=\{2,3\}
$$

- lower and upper bounds, i.e. the minimum and maximal value the variable can still take

Propagation

- The task of the propagator is to maintain domain consistency, i.e. to shrink the domains of variables to values that they can still take
if domain $D(x)=\{2\}, D(y)=\{2,3\}$ and constraint $x \neq y$ apply, then we can deduce that $D(y)=\{3\}$.

> if domain $D(x)=\{1, \ldots, 5\}, D(y)=\{1,2\}$ and constraint $x+y<5$ apply then we deduce that $D(x)=\{1, \ldots, 3\}$

CP Search

Search (Variables): propagate all constraints till fix point if contradiction found then return if at least one variable is not fixed yet then pick one variable V not fixed for each possible value of V do let $V=$ value in this iteration Search (Variables)
od else
print solution in Variables

CP Search

all rows: all_different(row) all columns: all_different(col) all squares: all_different(square)

CP: Branch \& Propagate

- propagate 2 (row)
- branch 4
- propagate 6 (square)

2					6	5	4	
				2		7	9	3
						8	1	2
						1		
								1

Propagation

- Propagators may implement special algorithms and data structures
all-different constraint:
all variables in a list must have a different value algorithm 1: use inequality constraints independently

$$
\begin{aligned}
& \mathrm{D}\left(\mathrm{x}_{1}\right)=\{1,2\} \\
& \mathrm{D}\left(\mathrm{x}_{2}\right)=\{1,3\} \\
& \mathrm{D}\left(\mathrm{x}_{3}\right)=\{1,3\} \\
& \mathrm{x}_{1} \neq \mathrm{x}_{2}, \mathrm{x}_{1} \neq \mathrm{x}_{3}, \mathrm{x}_{2} \neq \mathrm{x}_{3}
\end{aligned}
$$

Propagation for inequality:
if one variable is fixed, remove the corresponding
value from the domain of the other variable
\rightarrow nothing happens in example

Propagation

- Propagators may implement special algorithms and data structures
all-different constraint:
all variables in a list must have a different value algorithm 2: graph-based; bipartite matching

Variable 1

Value 1
Variable 1 is fixed to value 2
Variable 2
Value 2
Variable 3
Value 3

Comparison to SAT solvers

- CP solvers support larger numbers of constraints \& optimization
- When applied to CNF formulas, they search less efficiently as:
- there is no clause learning
- there is no propagation for pure symbols

These weaknesses led to the development of SMT SAT solvers (SAT-Modulo-Theories), which combine ideas of constraint programming and SAT solvers

Robert Nieuwenhuis, 2006.

Implementation issues

- When to run a propagator?
- when a variable changes? (In any way)
- when one particular bound changes?
for domain $D(x)=\{1, \ldots, 3\}, D(y)=\{1,2,3\}$ and constraint $x+y<5$; should we propagate when we remove value 1 from $D(y)$? When we remove value 3 ?

In the CP literature, many different such strategies have been explored, called $\mathrm{AC}_{1}, \mathrm{AC}_{2}, \mathrm{AC}_{3}, \ldots . \mathrm{AC}_{5}$

Implementation issues

- Should we store simplified constraints during the search?

$$
\begin{aligned}
& D(x)=\{1,2,3\}, D(y)=\{4\}, D(z)=\{1,2\}, \\
& x+y+z<10 \rightarrow x+z<6
\end{aligned}
$$

- Which order to select variables?
- Which order to select values?

Implementation issues

- How to branch over variables?
$D(x)=\{1, \ldots, 10\}, D(z)=\{1, \ldots, 10\}, x+y<20$
Branch with $D(x)=\{c\}$ for all c in $1 . . .10$?
Branch with $D(x)=\{1 \ldots, 5\}$ and $D(x)=\{6, . .10\}$?

INTEGER LINEAR PROGRAMMING

Linear programming

- One special type of constraint is the linear constraint:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b
$$

Constant
Real valued variable

- A linear program is a constraint optimization problem on real-valued variables with a linear optimization criterion and linear constraints, and no other constraints:
maximize $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$
where $\quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1}$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
\end{aligned}
$$

Linear Programming Examples

$$
x_{2}
$$

maximize $x_{1}+2 x_{2}$ where $\quad x_{1}+x_{2} \leq 2$

$$
-x_{1} \leq 0
$$

$$
x_{1}=0, x_{2}=2
$$

Feasible region

$$
\operatorname{maximize}-2 x_{1}+3 x_{2} \quad x_{1}=0, x_{2}=3.5
$$

$$
x_{1}-x_{2} \leq 2
$$

$$
\begin{aligned}
& -x_{1} \leq 0 \\
& x_{2} \leq 3.5
\end{aligned}
$$

Integer Linear Programming

- Integer linear programming differs from linear programming in that we constrain some variables to integer values; if some variables are not integer, this is also referred to as mixed integer linear programming

```
maximize - 2x + + 3x (
where \(\quad x_{1}-x_{2} \leq 2\)
\(-x_{1} \leq 0\)
\(x_{2} \leq 3.5\)
\(x_{1}, x_{2} \in \mathbb{Z}\)
```

$$
x_{1}=0, x_{2}=3
$$

Solvers Linear Programming

- Linear programs can be solved in polynomial time by using interior point algorithms, which "walk through the interior of the feasible region"
- In practice, linear programs are often solved using simplex algorithms, which "walk over the outer rim of the feasible region" (the edges of the convex polytope)

Solvers for

Integer Linear Programming

- There are no polynomial solvers for integer linear programming
- Most solvers are based on cut-and-branch
- solve the program without integer constraints
- if solution is not integer, try to add a "clever" linear constraint that "cuts" the non-integer solution from the feasible solution space, without changing the feasible integer solutions
- branch if no such linear constraint can be found, for the two closest integer values for one of the variables that does not have an integer value

Graph Coloring using ILP

Example: we could use ILP to solve graph coloring with k colors
(left: constraint in SAT form) (right: constaint in ILP form)

- for each node i, create a formula

$$
\phi_{i}=p_{i 1} \vee p_{i 2} \vee \cdots \vee p_{i k} \quad x_{i 1}+x_{i 2}+\cdots+x_{i k} \geq 1
$$ indicating that each node i must have a color

- for each node i and different pair of colors c_{1} and c_{2}, create a formula

$$
\phi_{i c_{1} c_{2}}=\neg p_{i c_{1}} \vee \neg p_{i c_{2}} \quad\left(1-x_{i c_{1}}\right)^{2}+\left(1-x_{i c_{2}}\right) \geq 1
$$

indicating a node may not have more than 1 color

- for each edge, create k formulas

$$
\phi_{i j c}=\neg p_{i c} \vee \neg p_{j c} \quad\left(1-x_{i c}\right)+\left(1-x_{j c}\right) \geq 1
$$

indicating that a pair of connected nodes i and j may not both have color c at the same time

- for each variable the requirement that its value can only be zero or one

Knapsack

using ILP

- Given:
- N items with sizes $a_{p} \ldots, a_{N}$, prices p_{p}, \ldots, p_{N}
- A maximum weight W
- Find:

\bullet a subset of items $I \rightarrow$ variables x_{i}, each with domain $\{0,1\}$
- Such that:
- $\sum_{i=1} p_{i} x_{i}$ is maximal (very valuable knapsack)
- $\sum_{i=1}^{n} a_{i} x_{i} \leq W \quad$ (knapsack with low weight)

Comparison

	Variables	Constraints	Optimization	Special Technology			
SAT Solver	Boolean (0/1)	Clauses	Not supported directly	Clause learning, unit			
propagation,							
pure literals					$	$	Propagation
:---							
CP Finite Domain Solver							
FP Solver	Real		Linite domain	Many	Many		
:---	:---	:---	:---				

